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Abstract 

This study investigates to what extent there is an 

association between students’ self-reported 

perceptions of online learning and observed online 

learning behaviors recorded by the learning 

analytic data. The participants were 319 

undergraduates studying an engineering course in 

an Australian university. Data analyses were 

conducted using cluster analyses, Hidden Markov 

Model, one-way ANOVAs, and a cross-tabulation. 

The relations between students’ self-reported 

perceptions and their academic learning outcome 

show that those with positive perceptions tended to 

have higher scores. The relations between 

observational online learning behaviors and their 

academic learning outcome demonstrate that 

students with most learning sessions achieved 

more highly. The cross-tabulation finds a 

significant association between the cluster 

membership generated by by the self-reported 

perceptions and observational online learning 

behaviors. Amongst students who had most study 

sessions characterized by high percentages of 

reading and formative states and low percentage 

of summative states, the proportion of those with 

positive perceptions (40.2%) was significantly 

higher than those with negative perceptions 

(20.0%). Of students who had the least study 

sessions represented by moderate reading and 

summative states, and low formative states, the 

proportion of students with positive perceptions 

(3.0%) was significantly lower than the proportion 

of students having negative perceptions (8.7%). 
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Introduction 

Learning analytics in higher education is used for a number of purposes, such as issues of 

attrition (Dawson, Jovanovic, Gašević, & Pardo, 2017), social presence (Joksimović, Gašević, 

Kovanović, Riecke, & Hatala, 2015), learning design (Tempelaar, Rienties, & Giesbers, 2015), 

and education policy (Ferguson et al., 2016). While some learning analytic studies adopt 

bottom-up approaches, which are predominantly guided by empirical evidence separated from 

educational theories; others argue for top-down approaches, which sound theoretically 

orientated frameworks to guide the analyses of online analytic data (Gašević, Dawson, & 

Siemens, 2015). In the extant literature, however, there is a dearth of research, which combines 

measures of analytics and the intent and experience of the students underpinning them (Han & 

Ellis, 2017). To improve our understanding of student online learning experiences, it is important 

to investigate how the two approaches are associated with each other, and the extent to which 

the results derived from the two approaches are triangulated. This study uses top-down (i.e., 

students’ self-reported perceptions of their online learning experience) and bottom-up 

approaches (i.e., the patterns of students’ online learning behaviors) separately to investigate 

the relations between either students’ self-reported and observational online learning 

experiences and their academic learning outcomes. It then examines the association of the 

patterns of online learning generated from the two.  

Three research questions guided the present study: 

1.  What are the relations between students’ self-reported perceptions of online learning 

environment and their academic learning outcomes?   

2.  What are the relations between students’ observational online learning behaviors and 

their academic learning outcomes?   

3.  To what extent are the patterns of self-reported perceptions of online learning 

environment and their online learning behaviors associated? 

Method 

Participants 

The participants of the study were 319 volunteers, who studied towards a Bachelor of 

Engineering degree in an Australian university. The course required students to attend lectures, 

tutorials, and laboratory practice sessions each week and compulsory participation in the online 

learning.  

Instruments and data 

Self-reported data 

We used a 5-point Likert questionnaire to examine students’ self-reported perceptions of online 

learning environment. The questionnaire consisted of two scales: 1) perceptions of integrated 

learning environment, which assessed the extent of how online part of learning is integrated with 

the whole course (7 items, α = .86); and 2) perceptions of online contributions, which examined 

the extent of how students valued online contributions by themselves and by their classmates (6 

items, α = .87).  
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Observational Data 

We obtained the learning analytic data of students’ online learning behaviors in week two to five 

from the LMS (we excluded the data from week 1 because this week was given to students for 

them to make decision as to if they were going to enrol in this course). There were five types of 

online learning behaviors: reading printed learning materials, watching video learning materials, 

solving problems in sequences (formative learning), self-testing key concepts in the course 

(summative learning), and viewing feedback and progression of online learning.  

Academic Learning Outcome 

We used the scores of the mid-term examination as an indicator of students’ academic learning 

outcome. The mid-term examination consisted of a set of 20 multiple-choice problem-solving 

questions on the topics covered in the first 5 weeks of the course.  

Data Analysis 

The participants of the study were 319 volunteers, who studied towards a Bachelor of 

Engineering degree in an Australian university. The course required students to attend lectures, 

tutorials, and laboratory practice sessions each week and compulsory participation in the online 

learning.  

Results 

Students’ Self-Reported Perceptions of Online Learning Environment and Their 

Academic Learning Outcomes 

The results of the cluster analysis and one-way ANOVAs are displayed in Table 1.  

 

Table 1  

Results of cluster analysis and one-way ANOVAs of the self-reported data 

variable positive perceptions 

(N = 169) 

negative perceptions 

(N = 150) 

F p η2 

 M M    

INTER .52 -.59 96.90 .00 .30 

OC .39 -.46 67.16 .00 .18 

ALO .47 -.59 88.97 .00 .29 

 

Students’ Observed Online Learning Behaviors 

The Hidden Markov Model (HMM) identified three study session states: reading state (in green): 

predominantly reading behaviors and few metacognitive behaviors; formative state (in light 

blue): predominantly formative learning behaviors, few watching video and reading behaviors; 

summative state (in dark blue): predominantly summative learning behaviors, few reading and 

metacognitive behaviors. The agglomerative hierarchical clustering analysis, which used the 

above identified three states, generated four HMM clusters visualized in Figure 1.  
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Figure 1 

The Four HMM Clusters 

 

HMM cluster 1 (N = 98): most study sessions with high percentages of reading and formative 

states and low percentage of summative states.  

HMM cluster 2 (N = 143): the second most study sessions with high percentage of reading 

states, moderate percentage of formative states, and low percentage of summative states. 

HMM cluster 3 (N = 18): the least study sessions with moderate reading and summative states, 

and low formative states. 

HMM cluster 4 (N =60): the second least study sessions with high percentage of reading states, 

moderate percentage of summative states, and low percentage of formative states.  

The results of the one-way ANOVA in Table 2 of the academic learning outcome showed that 

there were significant differences amongst the four HMM clusters: F (3, 316) = 7.43, p < .01, η2 

= .07.  

Table 2 

Results of Post-Hoc Analyses of the Academic Learning Outcome by HMM Clusters 

HMM cluster M SD post-hoc 

HMM cluster 1 14.36 3.36 1 > 2 

   1 > 3 

   1 > 4 

HMM cluster 2 13.13 3.56 2 < 1 

   2 > 3 

   2 = 4 

HMM cluster 3 10.94 2.60 3 < 1 

   3 < 2 

   3 = 4 

HMM cluster 4 12.45 3.22 4 < 1 

   4 = 2 

   4 = 3 
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Association Between Self-Reported Perceptions of Online Learning Environment and 

Observational Online Learning Behaviors 

The cross-tabulation results in Table 3 show that there was a significant association between 

cluster membership generated by the self-reported perceptions and observational online 

learning behaviors, χ² (3) = 20.56, p < .01.  

Table 3 

Results of Cross-Tabulation  

HMM cluster count 

% 

positive negative total 

HMM cluster 1 count 68a 30b 98 

% within perceptions 40.2% 20.0% 30.7% 

HMM cluster 2 count 73a 70a 143 

% within perceptions 43.2% 46.7% 44.8% 

HMM cluster 3 count 5a 13b 18 

% within perceptions 3.0% 8.7% 5.6% 

HMM cluster 4 count 23a 37b 60 

% within perceptions 13.6% 24.7% 18.8% 

total count 169 150 319 

 % within perceptions 100.0% 100.0% 100.0% 

Conclusions 

The combined approaches and multiple data sources from self-reported survey and digital 

traces recorded in the LMS demonstrate the triangulation between the two, which improves the 

quality of the analyses over a single data source.  
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