Feedback Generation through Artificial Intelligence




feedback, artificial intelligence, learning analytics, educational data mining, assessment


Feedback is an essential part of the educational assessment that improves student learning. As education changes with the advancement of technology, educational assessment has also adapted to the advent of Artificial Intelligence (AI). Despite the increasing use of online assessments during the last decade, a limited number of studies have discussed the feedback generation process as implemented through AI. To address this gap, we propose a conceptual paper to organize and discuss the application of AI in the feedback generation and delivery processes. Among different branches of AI, Natural Language Processing (NLP), Educational Data Mining (EDM), and Learning Analytics (LA) play the most critical roles in the feedback generation process. The process begins with analyzing students’ data from educational assessments to build a predictive machine learning model with additional features such as students’ interaction with course material using EDM methods to predict students’ learning outcomes. Written feedback can be generated from a model with NLP-based algorithms before being delivered, along with non-verbal feedback via a LA dashboard or a digital score report. Also, ethical recommendations for using AI for feedback generation are discussed. This paper contributes to understanding the feedback generation process to serve as a venue for the future development of digital feedback.


Download data is not yet available.